
beginner

beginner ii

COLLABORATORS

TITLE :

beginner

ACTION NAME DATE SIGNATURE

WRITTEN BY March 1, 2023

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

beginner iii

Contents

1 beginner 1

1.1 E Built-In Constants Variables and Functions . 1

1.2 Built-In Constants . 1

1.3 Built-In Variables . 2

1.4 Built-In Functions . 3

1.5 Input and output functions . 4

1.6 Intuition support functions . 7

1.7 Graphics functions . 13

1.8 Maths and logic functions . 14

1.9 System support functions . 17

beginner 1 / 18

Chapter 1

beginner

1.1 E Built-In Constants Variables and Functions

E Built-In Constants, Variables and Functions

This chapter describes the constants, variables and functions which are
built in to the E language. You can add more by using modules, but that’s
a more advanced topic (see Modules).

Built-In Constants

Built-In Variables

Built-In Functions

1.2 Built-In Constants

Built-In Constants
==================

We’ve already met several built-in constants. Here’s the complete list:

TRUE, FALSE
The boolean constants. As numbers, TRUE is -1 and FALSE is zero.

NIL
The bad pointer value. Several functions produce this value for a
pointer if an error occurred. As a number, NIL is zero.

ALL
Used with string and list functions to indicate that all the string
or list is to be used. As a number, ALL is -1.

GADGETSIZE

beginner 2 / 18

The minimum number of bytes required to hold all the data for one
gadget. See

Intuition support functions
.

OLDFILE, NEWFILE
Used with Open to open an old or new file. See the ‘AmigaDOS Manual’
for more details.

STRLEN
The length of the last string constant used. Remember that a string
constant is something between ’ characters, so, for example, the
following program prints the string s and then its length:

PROC main()
DEF s:PTR TO CHAR, len
s:=’12345678’
len:=STRLEN
WriteF(s)
WriteF(’\nis \d characters long\n’, len)

ENDPROC

1.3 Built-In Variables

Built-In Variables
==================

The following variables are built in to E and are called system
variables. They are global so can be accessed from any procedure.

arg
This is a string which contains the command line arguments passed
your program when it was run (from the Shell or CLI). For instance,
if your program were called fred and you ran it like this:

fred file.txt "a big file" another

then arg would the string:

file.txt "a big file" another

If you have AmigaDOS 2.0 (or greater) you can use the system routine
ReadArgs to parse the command line in a much more versatile way.
There is a worked example on argument parsing in Part Three (see
Argument Parsing).

wbmessage
This contains NIL if your program was started from the Shell/CLI,
otherwise it’s a pointer to the Workbench message which contains
information about the icons selected when you started the program
from Workbench. So, if you started the program from Workbench
wbmessage will not be NIL and it will contain the Workbench
arguments, but if you started the program from the Shell/CLI

beginner 3 / 18

wbmessage will be NIL and the argments will be in arg (or via
ReadArgs). There is a worked example on argument parsing in Part
Three (see Argument Parsing).

stdin, stdout, conout
The stdin and stdout variables contain the standard input and output
filehandles. If your program was started from the Shell/CLI they
will be filehandles on the Shell/CLI window (and conout will be NIL).
However, if your program was started from Workbench these will both
be NIL, and in this case the first call to WriteF will open an output
CON: window and store the file handle for the window in stdout and
conout. The file handle stored in conout will be closed using Close
when the program terminates, so you can set up your own CON: window
or file for use by the output functions and have it automatically
closed. See

Input and output functions
.

stdrast
The raster port used by E built-in graphics functions such as Box and
Plot. This can be changed so that these functions draw on different
screens etc. See

Graphics functions
.

dosbase, execbase, gfxbase, intuitionbase
These are pointers to the appropriate library base, and are
initialised by the E startup code, i.e., the Dos, Exec, Graphics and
Intuition libraries are all opened by E so you don’t need to do it
yourself. These libraries are also automatically closed by E, so you
shouldn’t close them yourself. However, you must explicitly open and
close all other Amiga system libraries that you want to use. The
other library base variables are defined in the accompanying module
(see Modules).

1.4 Built-In Functions

Built-In Functions
==================

There are many built-in functions in E. We’ve already seen a lot of
string and list functions, and we’ve used WriteF for printing. The
remaining functions are, generally, simplifications of complex Amiga
system functions, or E versions of support functions found in languages
like C and Pascal.

To understand the graphics and Intuition support functions completely
you really need to get something like the ‘Rom Kernel Reference Manual
(Libraries)’. However, if you don’t want to do anything too complicated
you should be able to get by.

beginner 4 / 18

Input and output functions

Intuition support functions

Graphics functions

Maths and logic functions

System support functions

1.5 Input and output functions

Input and output functions

WriteF(string,param1,param2,...)
Writes a string to the standard output and returns the number of
characters written. If place-holders are used in the string then the
appropriate number of parameters must be supplied after the string in
the order they are to be printed as part of the string. So far we’ve
only met the \d place-holder for decimal numbers. The complete list
is:

Place-Holder Parameter Type Prints

\c Number Character
\d Number Decimal number
\h Number Hexadecimal number
\s String String

So to print a string you use the \s place-holder in the string and
supply the string (i.e., a PTR TO CHAR) as a parameter. Try the
following program (remember \a prints an apostrophe character):

PROC main()
DEF s[30]:STRING
StrCopy(s, ’Hello world’, ALL)
WriteF(’The third element of s is "\c"\n’, s[2])
WriteF(’or \d (decimal)\n’, s[2])
WriteF(’or \h (hexadecimal)\n’, s[2])
WriteF(’and s itself is \a\s\a\n’, s)

ENDPROC

This is the output it generates:

The third element of s is "l"
or 108 (decimal)
or 6C (hexadecimal)
and s itself is ’Hello world’

You can control how the parameter is formatted in the \d, \h and
\s fields using another collection of special character
sequences before the place-holder and size specifiers after it. If
no size is specified the field will be as big as the data requires.

beginner 5 / 18

A fixed field size can be specified using [number] after the
place-holder. For strings you can also use the size specifier
(min,max) which specifies the minimum and

maximum sizes of the field. By default the data is right justified
in the field and the left part of the field is filled, if necessary,
with spaces. The following sequences before the place-holder can
change this:

Sequence Meaning

\l Left justify in field
\r Right justify in field
\z Set fill character to "0"

See how these formatting controls affect this example:

PROC main()
DEF s[30]:STRING
StrCopy(s, ’Hello world’, ALL)
WriteF(’The third element of s is "\c"\n’, s[2])
WriteF(’or \d[4] (decimal)\n’, s[2])
WriteF(’or \z\h[4] (hexadecimal)\n’, s[2])
WriteF(’\a\s[5]\a are the first five elements of s \n’, s)
WriteF(’and s in a very big field \a\s[20]\a\n’, s)
WriteF(’and s left justified in it \a\l\s[20]\a\n’, s)

ENDPROC

Here’s the output it should generate:

The third element of s is "l"
or 108 (decimal)
or 006C (hexadecimal)
’Hello’ are the first five elements of s
and s in a very big field ’ Hello world’
and s left justified in it ’Hello world ’

WriteF uses the standard output, and this file handle is stored in
the stdout variable. If your program is started from Workbench this
variable will contain NIL. In this case, the first call to WriteF
will open a special output window and put the file handle in the
variables stdout and conout, as outlined above (see

Built-In Variables
).

PrintF(string,param1,param2,...)
PrintF works just like WriteF except it uses the more efficient,
buffered output routines only available if your Amiga is using
Kickstart version 37 or greater (i.e., AmigaDOS 2.04 and above).

StringF(e-string,string,arg1,arg2,...)
The same as WriteF except that the result is written to e-string
instead of being printed. For example, the following code fragment
sets s to 00123 is a (since the E-string is not long enough for the
whole string):

DEF s[10]:STRING

beginner 6 / 18

StringF(s, ’\z\d[5] is a number’, 123)

Out(filehandle,char)
Outputs a single character, char, to the file or console window
denoted by filehandle, and returns -1 to indicate success (so any
other return value means an error occurred). For instance,
filehandle could be stdout, in which case the character is written
to the standard output. (You need to make sure stdout is not NIL,
and you can do this by using a WriteF(’’) call.) In general, you
obtain a filehandle using the Amiga system function Open from the
dos.library (see String Handling and I-O).

Inp(filehandle)
Reads and returns a single character from filehandle. If -1 is
returned then the end of the file (EOF) was reached, or there was an
error.

ReadStr(filehandle,e-string)
Reads a whole string from filehandle and returns -1 if EOF was
reached or an error occurred. Characters are read up to a linefeed
or the size of the string, whichever is sooner. Therefore, the
resulting string may be only a partial line. If -1 is returned then
EOF was reached or an error occurred, and in either case the string
so far is still valid. So, you still need to check the string even
if -1 is returned. (This will most commonly happen with files that
do not end with a linefeed.) The string will be empty (i.e., of zero
length) if nothing more had been read from the file when the error or
EOF happened.

This next little program reads continually from its input until an
error occurs or the user types quit. It echoes the lines that it
reads in uppercase. If you type a line longer than ten characters
you’ll see it reads it in more than one go. Because of the way
normal console windows work, you need to type a return before a line
gets read by the program (but this allows you to edit the line before
the program sees it). If the program is started from Workbench then
stdin would be NIL, so WriteF(’’) is used to force stdout to be
valid, and in this case it will be a new console window which can be
used to accept input! (To make the compiled program into a Workbench
program you simply need to create a tool icon for it. A quick way of
doing this is to copy an existing tool’s icon.)

PROC main()
DEF s[10]:STRING, fh
WriteF(’’)
fh:=IF stdin THEN stdin ELSE stdout
WHILE ReadStr(fh, s)<>-1

UpperStr(s)
EXIT StrCmp(s, ’QUIT’, ALL)

WriteF(’Read: \a\s\a\n’, s)
ENDWHILE
WriteF(’Finished\n’)

ENDPROC

There are some worked examples in Part Three (see
String Handling and I-O) which also show how to use ReadStr.

beginner 7 / 18

FileLength(string)
Returns the length of the file named in string, or -1 if the file
doesn’t exist or an error occurred. Notice that you don’t need to
Open the file or have a filehandle, you just supply the filename.
There is a worked example in Part Three (see String Handling and I-O)
which shows how to use this function.

SetStdIn(filehandle)
Returns the value of stdin before setting it to filehandle.
Therefore, the following code fragments are equivalent:

oldstdin:=SetStdIn(newstdin)

oldstdin:=stdin
stdin:=newstdin

SetStdOut(filehandle)
Returns the value of stdout before setting it to filehandle, and is
otherwise just like SetStdIn.

1.6 Intuition support functions

Intuition support functions

The functions in this section are simplified versions of Amiga system
functions (in the Intuition library, as the title suggests). To make best
use of them you are probably going to need something like the ‘Rom Kernel
Reference Manual (Libraries)’, especially if you want to understand the
Amiga specific things like IDCMP and raster ports.

The descriptions given here vary slightly in style from the previous
descriptions. All function parameters can be expressions which represent
numbers or addresses, as appropriate. Because many of the functions take
several parameters they have been named (fairly descriptively) so they can
be more easily referenced.

OpenW(x,y,wid,hgt,idcmp,wflgs,title,scrn,sflgs,gads,tags=NIL)
Opens and returns a pointer to a window with the supplied properties.
If for some reason the window could not be opened NIL is returned.

x, y
The position on the screen where the window will appear.

wid, hgt
The width and height of the window.

idcmp, wflgs
The IDCMP and window specific flags.

title
The window title (a string) which appears on the title bar of
the window.

beginner 8 / 18

scrn, sflgs
The screen on which the window should open. If sflgs is 1 the
window will be opened on Workbench, and scrn is ignored (so it
can be NIL). If sflgs is $F (i.e., 15) the window will open
on the custom screen pointed to by scrn (which must then be
valid). See OpenS to see how to open a custom screen and get a
screen pointer.

gads
A pointer to a gadget list, or NIL if you don’t want any gadgets.
These are not the standard window gadgets, since they are
specified using the window flags. A gadget list can be created
using the Gadget function.

tags
A tag-list of other options available under Kickstart version 37
or greater. This can normally be omitted since it defaults to
NIL. See the ‘Rom Kernel Reference Manual (Libraries)’ for
details about the available tags and their meanings.

There’s not enough space to describe all the fine details about
windows and IDCMP (see the ‘Rom Kernel Reference Manual (Libraries)’
for complete details), but a brief description in terms of flags
might be useful. Here’s a small table of common IDCMP flags:

IDCMP Flag Value

IDCMP_NEWSIZE $2
IDCMP_REFRESHWINDOW $4
IDCMP_MOUSEBUTTONS $8
IDCMP_MOUSEMOVE $10
IDCMP_GADGETDOWN $20
IDCMP_GADGETUP $40
IDCMP_MENUPICK $100
IDCMP_CLOSEWINDOW $200
IDCMP_RAWKEY $400
IDCMP_DISKINSERTED $8000
IDCMP_DISKREMOVED $10000

Here’s a table of useful window flags:

Window Flag Value

WFLG_SIZEGADGET $1
WFLG_DRAGBAR $2
WFLG_DEPTHGADGET $4
WFLG_CLOSEGADGET $8
WFLG_SIZEBRIGHT $10
WFLG_SIZEBBOTTOM $20
WFLG_SMART_REFRESH 0
WFLG_SIMPLE_REFRESH $40
WFLG_SUPER_BITMAP $80
WFLG_BACKDROP $100
WFLG_REPORTMOUSE $200
WFLG_GIMMEZEROZERO $400
WFLG_BORDERLESS $800

beginner 9 / 18

WFLG_ACTIVATE $1000

All these flags are defined in the module intuition/intuition, so if
you use that module you can use the constants rather than having to
write the less descriptive value (see Modules). Of course, you can
always define your own constants for the values that you use.

You use the flags by OR-ing the ones you want together, in a similar
way to using sets (see Sets). However, you should supply only IDCMP
flags as part of the idcmp parameter, and you should supply only
window flags as part of the wflgs parameter. So, to get IDCMP
messages when a disk is inserted and when the close gadget is clicked
you specify both of the flags IDCMP_DISKINSERTED and
IDCMP_CLOSEWINDOW for the idcmp parameter, either by OR-ing the
constants or (less readably) by using the calculated value $8200.

Some of the window flags require some of IDCMP flags to be used as
well, if an effect is to be complete. For example, if you want your
window to have a close gadget (a standard window gadget) you need to
use WFLG_CLOSEGADGET as one of the window flags. If you want that
gadget to be useful then you need to get an IDCMP message when the
gadget is clicked. You therefore need to use IDCMP_CLOSEWINDOW as
one of the IDCMP flags. So the full effect requires both a window
and an IDCMP flag (a gadget is pretty useless if you can’t tell when
it’s been clicked). The worked example in Part Three illustrates how
to use these flags in this way (see Gadgets).

If you only want to output text to a window (and maybe do some input
from a window), it may be better to use a console window. These
provide a text based input and output window, and are opened using
the Dos library function Open with the appropriate CON: file name.
See the ‘AmigaDOS Manual’ for more details about console windows.

CloseW(winptr)
Closes the window which is pointed to by winptr. It’s safe to give
NIL for winptr, but in this case, of course, no window will be
closed! The window pointer is usually a pointer returned by a
matching call to OpenW. You must remember to close any windows you
may have opened before terminating your program.

OpenS(wid,hgt,depth,scrnres,title,tags=NIL)
Opens and returns a pointer to a custom screen with the supplied
properties. If for some reason the screen could not be opened NIL is
returned.

wid, hgt
The width and height of the screen.

depth
The depth of the screen, i.e., the number of bit-planes. This
can be a number in the range 1-8 for AGA machines, or 1-6 for
pre-AGA machines. A screen with depth 3 will be able to show 2
to the power 3 (i.e., 8) different colours, since it will have 2
to the power 3 different pens (or colour registers) available.
You can set the colours of pens using the SetColour function.

scrnres

beginner 10 / 18

The screen resolution flags.

title
The screen title (a string) which appears on the title bar of
the screen.

tags
A tag-list of other options available under Kickstart version 37
or greater. See the ‘Rom Kernel Reference Manual (Libraries)’
for more details.

The screen resolution flags control the screen mode. The following
(common) values are taken from the module graphics/view (see Modules).
You can, if you want, define your own constants for the values that
you use. Either way it’s best to use descriptive constants rather
than directly using the values.

Mode Flag Value

V_LACE $4
V_SUPERHIRES $20
V_PFBA $40
V_EXTRA_HALFBRITE $80
V_DUALPF $400
V_HAM $800
V_HIRES $8000

So, to get a hires, interlaced screen you specify both of the flags
V_HIRES and V_LACE, either by OR-ing the constants or (less readably)
by using calculated value $8004. There is a worked example using
this function in Part Three (see Screens).

CloseS(scrnptr)
Closes the screen which is pointed to by scrnptr. It’s safe to
give NIL for scrnptr, but in this case, of course, no screen will
be closed! The screen pointer is usually a pointer returned by a
matching call to OpenS. You must remember to close any screens you
may have opened before terminating your program. Also, you must
close all windows that you opened on your screen before you can close
the screen.

Gadget(buf,glist,id,flags,x,y,width,text)
Creates a new gadget with the supplied properties and returns a
pointer to the next position in the (memory) buffer that can be used
for a gadget.

buf
This is the memory buffer, i.e., a chunk of allocated memory.
The best way of allocating this memory is to declare an array of
size n*GADGETSIZE, where n is the number of gadgets which are
going to be created. The first call to Gadget will use the
array as the buffer, and subsequent calls use the result of the
previous call as the buffer (since this function returns the
next free position in the buffer).

glist
This is a pointer to the gadget list that is being created,

beginner 11 / 18

i.e., the array used as the buffer. When you create the first
gadget in the list using an array a, this parameter should be
NIL. For all other gadgets in the list this parameter
should be the array a.

id
A number which identifies the gadget. It is best to give a
unique number for each gadget; that way you can easily identify
them. This number is the only way you can identify which gadget
has been clicked.

flags
The type of gadget to be created. Zero represents a normal
gadget, one a boolean gadget (a toggle) and three a boolean that
starts selected.

x, y
The position of the gadget, relative to the top, left-hand
corner of the window.

width
The width of the gadget (in pixels, not characters).

text
The text (a string) which will centred in the gadget, so the
width must be big enough to hold this text.

Once a gadget list has been created by possibly several calls to this
function the list can be passed as the gads parameter to OpenW.
There is a worked example using this function in Part Three (see
Gadgets).

Mouse()
Returns the state of the mouse buttons (including the middle mouse
button if you have a three-button mouse). This is a set of flags,
and the individual flag values are:

Button Pressed Value

Left %001
Right %010
Middle %100

So, if this function returns %001 you know the left button is being
pressed, and if it returns %110 you know the middle and right buttons
are both being pressed.

This mouse function is not strictly the proper way to do things. It
is suggested you use this function only for small tests or demo-like
programs. LeftMouse and WaitLeftMouse can be used to do things in a
friendly way, but are restricted to seeing when the left mouse button
is pressed. More generally, the proper way of getting mouse details
is to use the appropriate IDCMP flags for your window, wait for
events (using WaitIMessage, for example) and decode the received
information.

MouseX(winptr)

beginner 12 / 18

Returns the x coordinate of the mouse pointer, relative to the
window pointed to by winptr.

As above, this mouse function is not strictly the proper way to do
things.

MouseY(winptr)
Returns the y coordinate of the mouse pointer, relative to the
window pointed to by winptr.

As above, this mouse function is not strictly the proper way to do
things.

LeftMouse(winptr)
Returns TRUE if left mouse button has been clicked in the window
pointed to by winptr, and FALSE otherwise. In order for this to
work sensibly the window must have the IDCMP flag IDCMP_MOUSEBUTTONS
set (see above).

This function does things in a proper, Intuition-friendly manner and
so is a good alternative to the Mouse function.

WaitIMessage(winptr)
This function waits for a message from Intuition for the window
pointed to by winptr and returns the class of the message (which is
an IDCMP flag). If you did not specify any IDCMP flags when the
window was opened, or the specified messages could never happen
(e.g., you asked only for gadget messages and you have no gadgets),
then this function may wait forever. When you’ve got a message you
can use the MsgXXX functions to get some more information about the
message. See the ‘Rom Kernel Reference Manual (Libraries)’ for more
details on Intuition and IDCMP. There is a worked example using this
function in Part Three (see IDCMP Messages).

This function is basically equivalent to the following function,
except that the MsgXXX functions can also access the message data
held in the variables code, qual and iaddr.

PROC waitimessage(win:PTR TO window)
DEF port,msg:PTR TO intuimessage,class,code,qual,iaddr
port:=win.userport
IF (msg:=GetMsg(port))=NIL

REPEAT
WaitPort(port)

UNTIL (msg:=GetMsg(port))<>NIL
ENDIF
class:=msg.class
code:=msg.code
qual:=msg.qualifier
iaddr:=msg.iaddress
ReplyMsg(msg)

ENDPROC class

MsgCode()
Returns the code part of the message returned by WaitIMessage.

MsgIaddr()

beginner 13 / 18

Returns the iaddr part of the message returned by WaitIMessage.
There is a worked example using this function in Part Three (see
IDCMP Messages).

MsgQualifier()
Returns the qual part of the message returned by WaitIMessage.

WaitLeftMouse(winptr)
This function waits for the left mouse button to be clicked in the
window pointed to by winptr. It is advisable to have the IDCMP
flag IDCMP_MOUSEBUTTONS set for the window (see above).

This function does things in a proper, Intuition-friendly manner and
so is a good alternative to the Mouse function.

1.7 Graphics functions

Graphics functions

The functions in this section use the standard raster port, the address
of which is held in the variable stdrast. Most of the time you don’t need
to worry about this because the E functions which open windows and screens
set up this variable (see

Intuition support functions
). So, by default,

these functions affect the last window or screen opened. When you close a
window or screen, stdrast becomes NIL and calls to these functions have no
effect. There is a worked example using these functions in Part Three
(see Graphics).

The descriptions in this section follow the same style as the previous
section.

Plot(x,y,pen=1)
Plots a single point (x,y) in the specified pen colour. The
position is relative to the top, left-hand corner of the window or
screen that is the current raster port (normally the last screen or
window to be opened). The range of pen values available depend on
the screen setup, but are at best 0-255 on AGA machines and 0-31 on
pre-AGA machines. As a guide, the background colour is usually pen
zero, and the main foreground colour is pen one (and this is the
default pen). You can set the colours of pens using the SetColour
function.

Line(x1,y1,x2,y2,pen=1)
Draws the line (x1,y1) to (x2,y2) in the specified pen colour.

Box(x1,y1,x2,y2,pen=1)
Draws the (filled) box with vertices (x1,y1), (x2,y1),
(x1,y2) and (x2,y2) in the
specified pen colour.

Colour(fore-pen,back-pen=0)

beginner 14 / 18

Sets the foreground and background pen colours. As mentioned above,
the background colour is normally pen zero and the main foreground is
pen one. You can change these defaults with this function, and if
you stick to having the background pen as pen zero then calling this
function with one argument changes just the foreground pen.

TextF(x,y,format-string,arg1,arg2,...)
This works just like WriteF except the resulting string is drawn on
the current raster port (usually the last window or screen to be
opened) ,starting at point (x,y). Take care not to use any
line-feed, carriage return, tab or escape characters in the
string--they don’t behave like they do in WriteF.

SetColour(scrnptr,pen,r,g,b)
Sets the colour of colour register pen for the screen pointed to by
scrnptr to be the appropriate RGB value (i.e., red value r, green
value g and blue value b). The pen can be anything up to 255,
depending on the screen depth. Regardless of the chipset being used,
r, g and b are taken from the range zero to 255, so 24-bit
colours are always specified. In operation, though, the values are
scaled to 12-bit colour for non-AGA machines.

SetStdRast(newrast)
Returns the value of stdrast before setting it to the new value. The
following code fragments are equivalent:

oldstdrast:=SetStdRast(newstdrast)

oldstdrast:=stdrast
stdrast:=newstdrast

SetTopaz(size=8)
Sets the text font for the current raster port to Topaz at the
specified size, which defaults to the standard size eight.

1.8 Maths and logic functions

Maths and logic functions

We’ve already seen the standard arithmetic operators. The addition, +,
and subtraction, -, operators use full 32-bit integers, but, for
efficiency, multiplication, *, and division, /, use restricted values.
You can use * only to multiply 16-bit integers, and the result will be a
32-bit integer. Similarly, you can use / only to divide a 32-bit integer
by a 16-bit integer, and the result will be a 16-bit integer. The
restrictions do not affect most calculations, but if you really need to
use all 32-bit integers (and you can cope with overflows, etc.) you can
use the Mul and Div functions. Mul(a,b) corresponds to a*b, and Div(a,b)
corresponds to a/b.

We’ve also met the logic operators AND and OR, which we know are really
bit-wise operators. You can also use the functions And and Or to do

beginner 15 / 18

exactly the same as AND and OR (respectively). So, for instance, And(a,b)
is the same as a AND b. The reason for these functions is because there
are Not and Eor (bit-wise) functions, too (and there aren’t operators for
these). Not(a) swaps one and zero bits, so, for instance, Not(TRUE) is
FALSE and Not(FALSE) is TRUE. Eor(a,b) is the exclusive version of Or and
does almost the same, except that Eor(1,1) is 0 whereas Or(1,1) is 1 (and
this extends to all the bits). So, basically, Eor tells you which bits
are different, or, logically, if the truth values are different.
Therefore, Eor(TRUE,TRUE) is FALSE and Eor(TRUE,FALSE) is TRUE.

There’s a collection of other functions related to maths, logic or
numbers in general:

Abs(expression)
Returns the absolute value of expression. The absolute value of a
number is that number without any minus sign (i.e., its the size of a
number, disregarding its sign). So, Abs(9) is 9, and Abs(-9) is also
9.

Sign(expression)
Returns the sign of expression, which is the value one if it is
(strictly) positive, -1 if it is (strictly) negative and zero if it
is zero.

Even(expression)
Returns TRUE if expression represents an even number, and FALSE
otherwise. Obviously, a number is either odd or even!

Odd(expression)
Returns TRUE if expression represents an odd number, and FALSE
otherwise.

Max(exp1, exp2)
Returns the maximum of exp1 and exp2.

Min(exp1, exp2)
Returns the minimum of exp1 and exp2.

Bounds(exp, minexp, maxexp)
Returns the value of exp bounded to the limits minexp (minimum
bound) and maxexp (maximum bound). That is, if exp lies between
the bounds then exp is returned, but if it is less than minexp
then minexp is returned or if it is greater than maxexp then
maxexp is returned. This is useful for, say, constraining a
calculated value to be a valid (integer) percentage (i.e., a value
between zero and one hundred).

The following code fragments are equivalent:

y:=Bounds(x, min, max)

y:=IF x<min THEN min ELSE IF x>max THEN max ELSE x

Mod(exp1,exp2)
Returns the 16-bit remainder (or modulus) of the division of the
32-bit exp1 by the 16-bit exp2 as the regular return value (see
Multiple Return Values), and the 16-bit result of the division as the

beginner 16 / 18

first optional return value. For example, the first assignment in
the following code sets a to 5 (since 26=(7*3)+5), b to 3, c to -5
and d to -3. It is important to notice that if exp1 is negative
then the modulus will also be negative. This is because of the way
integer division works: it simply discards fractional parts rather
rounding.

a,b:=Mod(26,7)
c,d:=Mod(-26,7)

Rnd(expression)
Returns a random number in the range 0 to (n-1), where expression
represents the value n. These numbers are pseudo-random, so although
you appear to get a random value from each call, the sequence of
numbers you get will probably be the same each time you run your
program. Before you use Rnd for the first time in your program you
should call it with a negative number. This decides the starting
point for the pseudo-random numbers.

RndQ(expression)
Returns a random 32-bit value, based on the seed expression. This
function is quicker than Rnd, but returns values in the 32-bit range,
not a specified range. The seed value is used to select different
sequences of pseudo-random numbers, and the first call to RndQ should
use a large value for the seed.

Shl(exp1,exp2)
Returns the value represented by exp1 shifted exp2 bits to the
left. For example, Shl(%0001110,2) is %0111000 and Shl(%0001011,3)
is %1011000. Shifting a number one bit to the left is generally the
same as multiplying it by two (although this isn’t true when you
shift large positive or large negative values). (The new bits
shifted in at the right are always zeroes.)

Shr(exp1,exp2)
Returns the value represented by exp1 shifted exp2 bits to the
right. For example, Shr(%0001110,2) is %0000011 and Shr(%1011010,3)
is %0001011. For positive exp1, shifting one bit to the right is
the same as dividing by two. (The new bits shifted in at the left
are zeroes if exp1 is positive, and ones otherwise, hence
preserving the sign of the expression.)

Long(addr), Int(addr), Char(addr)
Returns the LONG, INT or CHAR value at the address addr. These
functions should be used only when setting up a pointer and
dereferencing it in the normal way would make your program cluttered
and less readable. Use of functions like these is often called
peeking memory (especially in dialects of the BASIC language).

PutLong(addr,exp), PutInt(addr,exp), PutChar(addr,exp)
Writes the LONG, INT or CHAR value represented by exp to the
address addr. Again, these functions should be used only when
really necessary. Use of functions like these is often called
poking memory.

beginner 17 / 18

1.9 System support functions

System support functions

New(bytes)
Returns a pointer to a newly allocated chunk of memory, which is
bytes number of bytes. If the memory could not be allocated NIL is
returned. The memory is initialised to zero in each byte, and taken
from any available store (Fast or Chip memory, in that order of
preference). When you’ve finished with this memory you can use
Dispose to free it for use elsewhere in your program. You don’t have
to Dispose with memory you allocated with New because your program
will automatically free it when it terminates. This is not true for
memory allocated using the normal Amiga system routines.

NewR(bytes)
The same as New except that if the memory could not be allocated then
the exception "MEM" is raised (and so, in this case, the function
does not return). See Exception Handling.

NewM(bytes,type)
The same as NewR except that the type of memory (Fast or Chip) to
be allocated can be specified using flags. The flags are defined in
the module exec/memory (see Amiga System Modules). See the ‘Rom
Kernel Reference Manual (Libraries)’ for details about the system
function AllocMem which uses these flags in the same way.

As useful example, here’s a small program which allocates some
cleared (i.e., zeroed) Chip memory.

MODULE ’exec/memory’

PROC main()
DEF m
m:=NewM(20, MEMF_CHIP OR MEMF_CLEAR)
WriteF(’Allocation succeeded, m = $\h\n’, m)

EXCEPT
IF exception="NEW" THEN WriteF(’Failed\n’)

ENDPROC

Dispose(address)
Used to free memory allocated with New, NewR or NewM. You should
rarely need to use this function because the memory is automatically
freed when the program terminates.

DisposeLink(complex)
Used to free the memory allocated with String (see String functions)
or List (see List functions). Again, you should rarely need to use
this function because the memory is automatically freed when the
program terminates.

FastNew(bytes)
The same as NewR except it uses a very fast, recycling method of
allocating memory. The memory allocated using FastNew is, as ever,
deallocated automatically at the end of a program, and can be

beginner 18 / 18

deallocated before then using FastDispose. Note that only
FastDispose can be used and that it differs slightly from the
Dispose and DisposeLink functions (you have to specify the number of
bytes again when deallocating).

FastDispose(address,bytes)
Used to free the memory allocated using FastNew. The bytes
parameter must be the same as the bytes used when the memory was
allocated with FastNew, but the benefit is much faster allocation and
deallocation, and generally more efficient use of memory.

CleanUp(expression=0)
Terminates the program at this point, and does the normal things an E
program does when it finishes. The value denoted by expression is
returned as the error code for the program. It is the replacement
for the AmigaDOS Exit routine which should never be used in an E
program. This is the only safe way of terminating a program, other
than reaching the (logical) end of the main procedure (which is by
far the most common way!).

CtrlC()
Returns TRUE if control-C has been pressed since the last call, and
FALSE otherwise. This is really sensible only for programs started
from the Shell/CLI.

FreeStack()
Returns the current amount of free stack space for the program. Only
complicated programs need worry about things like stack. Recursion
is the main thing that eats a lot of stack space (see Recursion).

KickVersion(expression)
Returns TRUE if your Kickstart revision is at least that given by
expression, and FALSE otherwise. For instance, KickVersion(37)
checks whether you’re running with Kickstart version 37 or greater
(i.e., AmigaDOS 2.04 and above).

	beginner
	E Built-In Constants Variables and Functions
	Built-In Constants
	Built-In Variables
	Built-In Functions
	Input and output functions
	Intuition support functions
	Graphics functions
	Maths and logic functions
	System support functions

